
Usage notes for Windows Browser 2.8
Hippocrates Sendoukas

September 30, 1993

Introduction
This document summarizes the use of WBR which is a browser for text files under MS-Windows.
It requires Windows 3.0 or later and works only on standard or enhanced modes. All program
functions can be accessed through standard menus or accelerator keys that are shown after each
menu entry. The program comforms to the MDI specification; its operation is quite simple; it reads
one or more text files into memory and displays them on the screen. You can move around the
file by using the scroll bars or the arrow keys. You can also use regular expressions for
convenient searching. Finally, you can use any installed font to display your files. All options as
well as window position and size are recorded in the "wbr.ini" file for your convenience.The
browser also records the last eight files that you opened and appends their names to the "File"
submenu. Then you can open any of these files quickly by clicking on the desired name.

Usage

The program accepts several command line switches and filenames. The purpose of these
command line arguments is to simplify the use of the browser from other programs; I chose this
method of interprocess communication since most programs can execute system commands,
while relatively few support more advanced forms of communication such as DDE or registered
messages. The formal usage is:

wbr [-1] [-x] [-l] [-c] [-n] [-w] [-s xxxx] [-g NN] [filename]

where items in square brackets are optional. If you specify one or more filenames upon
invocation, the browser will open all requested files in separate MDI windows.

The "-1" switch forces a single instance of the program; if you call the browser twice with this
switch, the second instance will only instruct the first instance to open (or refresh) the requested
files. This is a particularly useful feature since the calling program does not need to check if the
browser is already running. All other command line switches are meant to be used together with
this switch. When you use this switch, the program does not append any filenames to the "File"
submenu; this is useful for the temporary log files of the dvi driver.

The "-x" switch instructs the browser to display the requested file in a maximized window.

The "-l" switch is equivalent to the combination of the "-1" and "-x" switches; its only purpose is
backward compatibility with previous versions of the program.

The "-c" switch instructs the browser to close any other instance of itself. This is useful if you want
to terminate the program automatically.

The "-n" switch instructs the browser to avoid refreshing any files that are already open.

The "-w" switch instrust the browser to avoid issuing warnings about missing files.

The "-s xxxx" switch instructs the browser to search for the string "xxxx" in the active window.

1

The "-g NN" switch instructs the browser to go to line NN in the active window. If NN is negative, it
indicates a line relative to the end of the file.

Searching for text
The browser supports searches using "regular expressions". This is a very powerful method that
lets you perform "approximate" searches. Regular expressions are patterns that can match more
than one string. They are composed of normal and special characters. In their simplest form they
contain only normal characters and can match only a single string: for example the expression
"abc" will match the substring whether it occurs by itself or within a word. It will match the strings
"abc", "abcd", "0abcd"; it will not match the string "Abc" or "aBCd". Such simple patterns are
useful, but there are many cases where one needs something more powerful; suppose for
example that we want to find the keyword "if" in a Pascal program: Pascal is not case sensitive,
so we have to check all possible spelling combinations; furthermore, we do not want the pattern
to occur within other words. Regular expressions provide many such capabilities which are
controlled by special characters embedded within the pattern. These characters and their
functions are:

Character Function

. Matches any character
[...] Matches a character from those inside the bracket
* Matches zero or more instances of the preceding character
+ Matches one or more instances of the preceding character
? Matches zero or one instances of the preceding character
{n1,n2} Matches n1 to n2 instances of the preceding character
^ Matches the beginning of a line
$ Matches the end of a line
<...> Matches an entire word
(...) Brackets a regular expression

The first group of special characters involves the specification of single characters. A dot (.)
denotes any character; for example, the pattern "i." matches the strings "if", "in" or "i7". A set of
brackets enclosing some characters denotes a character class and the expression matches any
single character from the character class; the pattern "[Ii]f" matches the strings "if" and "If". You
can also abbreviate the character class by using a dash: the pattern "[a-z]" will match any
lowercase letter. You can also specify a negative character class, where the expression will match
any character except those in the character class; this is accomplished by specifying a caret sign
(^) immediately after the left bracket; the pattern "[^a-z]" will match any character except a
lowercase letter.

There are also some special characters dealing with the number of instances of a character (this
is called closure). An asterisk denotes zero or more occurrences of the preceding character; the
pattern "go*d" matches the strings "gd", "god", "good", "goood", etc. A plus sign denotes one or
more instances of the preceding character; the pattern "go+d" matches the strings "god", "good",
"goood", but not the string "gd". A question mark matches zero or one instances of the preceding
character; therefore, the pattern "go?d" will match only the strings "gd" and "god". The special
characters {n1,n2} match n1 to n2 instances of the preceding character; the pattern "go{2,3}d"
matches the strings "good" and "goood", but not the strings "god" or "gooood". There are also two
variants of the last special characters. The special characters "{n1}" match exactly n1 instances of
the preceding character, while the special characters "{n1,}" match at least n1 instances of the
preceding character.

2

The third group of special characters deals with the location of the string. If the first character of
the regular expression is a caret (^), the expression will be matched only at the beginning of a
line. For example, the pattern "^abc" matches the string "abc" only if it occurs at the beginning of
a line. Similarly the dollar sign ($) matches the end of a line; the pattern "abc$" matches the string
"abc" only if it occurs at the end of a line. The pattern "^$" will match all empty lines. Note that
these two characters are treated as special characters only if they occur in the beginning or the
end of the regular expression. That is, the pattern "a$b^c" will match the string "a$b^c" regardless
of its position on a line. Another set of special characters are "<" and ">". These facilitate the
matching of entire words, ignoring any matching substrings embedded in other strings. For
example, the pattern "<abc>" will match the string "abc" by itself, but not the string "abcd".

Sometimes we need to specify parts of the regular expression. For this reason, we use the
special characters "(" and ")" to bracket a part of the expression. The matching behavior is not
affected, but we can refer to these parts of the expression by the notation "\N" where N is a digit
between 1 and 9. Suppose that we want to find all sequences of two identical characters; this
would appear quite difficult since we do not know these characters in advance. Regular
expression bracketing solves this problem quite elegantly: the pattern "(.)\1" will find the desired
characters.

Since the characters . [] * + ? ^ $ () { } have a special meaning in the context of regular
expressions, we need another special notation when we want to search for them literally: in order
to suppress the special meaning of any character ("quote" it), we can precede it by a backslash.
Therefore if we want to find an asterisk, the search string will be "*"; if we want to find a left
parenthesis, the search string will be "\(". To find a backslash by itself, the search string will be
"\\". For the user's convenience, the program also accepts some standard escape sequences.
The sequence "\n" indicates the newline character (^J), "\r" indicates the carriage return character
(^M), "\t" indicates the tab character (^I), "\b" indicates the backspace character (^H), "\a"
indicates the bell character (^G), "\f" indicates the formfeed character (^L), and "\xNN" indicates
the character with code NN where NN are two hexadecimal digits. These escape sequences can
be used anywhere in the search patterns.

Another fundamental rule is that regular expressions try to match as many characters as
possible. While this is usually desirable, there are cases where it can be surprising. Suppose for
example that the search pattern is "\(.*\)" (the parentheses are quoted to indicate that we want to
match them literally), and our text is "(one) and (two)". In this case, the pattern will match the
entire line, since it will find the last right parenthesis at the end. If we wanted only the first pair of
parentheses, we should specify "\([^)]*\)" as our search pattern. In this way, it will match the
substring "(one)". The right parenthesis inside the square brackets does not need to be quoted:
almost all characters in a character class are taken literally.

Another point that we should keep in mind is that the matching of closures can be sometimes
surprising. Suppose for example that the search string is "s*". Since the search string specifies
zero or more occurrences of the letter s, it will match anything, including the empty string. The
problem is that the search string consists only of a closure, and therefore it matches anything. A
simple solution to this problem, is to avoid using such search strings.

For a more thorough discussion of regular expressions, one can read any book describing the
operation of the Unix "ed", "sed", "grep", "awk" or "lex" commands. In general, regular
expressions are quite powerful means of manipulating text. They have however several
limitations: for example, the construction of some compound patterns can be complicated.
Furthermore, they are line oriented: that is, they cannot match expressions spanning more than
one line.

3

Regular Expression Errors
It should be obvious by now that not all regular expressions are valid. The program checks each
expression and complains if it is illegal. The possible error messages are:

"Invalid number": This means that the program did not find an expected number. This
can happen when you do not specify a number inside a pair of braces.

"Invalid subexpression number": This means that you specified an undefined
subexpression. The expression "(.)\1" is valid because "\1" corresponds to the
subexpression "(.)". However, the expression "(.)\2" is invalid because you did not specify
two subexpressions (using parentheses).

"Unbalanced parentheses": This indicates that the left and right parentheses for
bracketing subexpressions are unbalanced.

"Too many (": This means that you tried to bracket more than 9 subexpressions.

"More than 2 numbers in { }": You can specify one or two numbers within a pair of
braces. This message indicates a violation of this rule.

"} expected": This message arises from an ill-formed pair of braces. The only valid
tokens inside the braces are numbers or a comma after the first number.

"First number exceeds second in { }": Two numbers inside a pair of braces indicate the
minimum and maximum number of times that the previous character should be matched.
Obviously, the minimum cannot be more than the maximum.

"Unbalanced square brackets": This message indicates that the left and right brackets
for a character class do not match.

"Expression too complicated": The program checks a regular expression for errors and
"compiles" it to an intermediate form for quick searching. This error can arise if the
intermediate form is too large, which typically happens if you specify too many character
classes (above 15).

"Invalid hexadecimal number": As mentioned previously, the program lets you specify
any 8-bit character by using a hexadecimal notation "\xNN" where NN is a valid
hexadecimal number. All such numbers should consist of two hexadecimal digits exactly:
that is, use \x08 instead of \x8. This error occurs if any of the two characters following \x
is not a valid hexadecimal character.

"Unknown error": This is a "catch all" that should never occur. If you see it, you can be
sure that there is a bug in the program and I would appreciate if you let me know about it,
so I can fix it.

Selecting a font
The program lets you use any installed font in your system; it can deal with variable pitched,
bitmap, vector, TrueType or ATM fonts. When you select the "Font" entry in the "Options" menu,
you are presented with a dialog box containing all the installed fonts at all sizes and styles. Your
selection is automatically recorded in "wbr.ini", so you do not need to set it more than once.

4

Copying text to the clipboard
You can copy the entire text of the active file to the clipboard by selecting the "Copy" command
from the "Edit" menu. There is no way in this version to copy only a portion of the text.

5

Packing List
Make sure that you have all the relevant files:

Filename Description

wbr.exe Text file browser
wbr.hlp Help file using standard fonts
wbr2.hlp Help file using larger fonts
wbr.wri Printable documentation
miscwin.dll Utility routines
commdlg.dll More utility routines
ctl3d.dll More utility routines

The only required files for the browser are "wbr.exe", "miscwin.dll", "ctl3d.dll" and "commdlg.dll";
the last file is required only when using Windows 3.0. The files "commdlg.dll" and "ctl3d.dll" are
distributed by Microsoft Co. which requires them to reside in your "\windows\system" directory. All
other files except for the documentation must reside either in a directory specified by the PATH
environment variable, or the base directory of Windows. If you use a resolution of 1024x768 or
higher, you may find the standard help fonts a bit hard to read. In that case, rename the file
"wbr2.hlp" to "wbr.hlp" so that the browser can use this file instead of the other one.

Caveats
The program reads files into memory and just displays them; it will complain if there is not enough
memory to load a file (which is unlikely since Windows has virtual memory). In general, it can
handle quite large files (unlike Notepad) without excessive demands on memory. The program
has proven quite useful to me, and I hope that it serves you equally well. I have tested and
debugged it extensively, but I cannot afford to make any guarantees; anybody who uses it
assumes all risks. On the other hand, if you find any bug or have any suggestion for
improvements, I will be more than happy to hear about it and I will do my best to fix it. You can
contact me via regular mail at "3 Sifnou St., Athens 11254, Greece".

Licensing Agreement
The author of this software grants to any individual or non-commercial organization the right to
use and to make an unlimited number of copies of this software. You may not decompile,
disassemble, reverse engineer, or modify the software. This includes, but is not limited to
modifying/changing any icons, menus, or displays associated with the software. This software
cannot be sold without written authorization from the author. This restriction is not intended to
apply to connect time charges, or flat rate connection/ download fees for electronic bulletin board
services. The author of this program accepts no responsibility for damages resulting from the use
of this software and makes no warranty or representation, either express or implied, including but
not limited to, any implied warranty of merchantability or fitness for a particular purpose. This
software is provided as is, and you, its user, assume all risks when using it.

6

